Periodicity and growth in a lattice gas with dynamical geometry.

نویسندگان

  • Karin Baur
  • Jeffrey M Rabin
  • David A Meyer
چکیده

We study a one-dimensional lattice gas "dynamical geometry model" in which local reversible interactions of counter-rotating groups of particles on a ring can create or destroy lattice sites. We exhibit many periodic orbits and show that all other solutions have asymptotically growing lattice length in both directions of time. We explain why the length grows as squareroot of t in all cases examined. We completely solve the dynamics for small numbers of particles with arbitrary initial conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice gas simulations of dynamical geometry in two dimensions.

We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and in...

متن کامل

Modelling Dynamical Geometry with Lattice Gas Automata

Conventional lattice gas automata consist of particles moving discretely on a xed lattice. While such models have been quite successful for a variety of uid ow problems, there are other systems, e.g., ow in a exible membrane or chemical self-assembly, in which the geometry is dynamical and coupled to the particle ow. Systems of this type seem to call for lattice gas models with dynamical geomet...

متن کامل

Lattice gas simulations of dynamical geometry in one dimension.

We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evo...

متن کامل

Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter

Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006